

Light that is right Optics 101

LEDiL® is a registered trademark of LEDiL Oy in the European Union, the U.S.A. and certain other countries. | www.ledil.com

Table of contents

Introduction into world of secondary optics •

- Why secondary LED optics?Lens vs reflector
- Luminance and Illuminance
- Efficiency
- Photometrics and simulation examples

Indoor lighting

- Types of indoor lighting and typical beams System reflectors and connectivity •
- Glare
- Industrial lighting and typical beams

Street lighting

- IESNA
- Beams

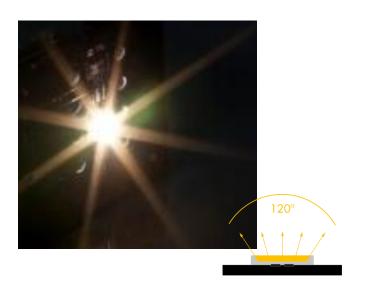
• Things to consider when choosing the right optics

- Flexibility and modularity
- LEDs
- Materials
- IP67
- System cost and in-use efficacy

Product naming and abbreviations •

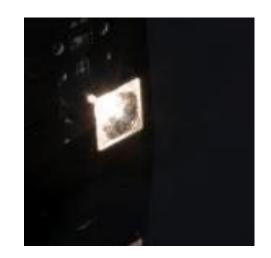
1. INTRODUCTION

INTO WORLD OF SECONDARY OPTICS


- Why secondary LED optics?
- Lens vs reflector
- Luminance and Illuminance
- Efficiency
- Photometrics and simulation examples

Why secondary LED optics?

Light where you need it


LED without optics

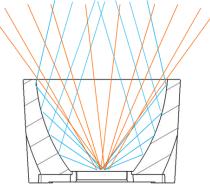
- All LEDs emit light in many directions!
- Uncomfortably bright (glare)
- Relatively low intensity
- Suitable for simple applications

LED with secondary optics

- Enables light management
- Pleasant light, reduced glare
- Enables advanced lighting design
- Choose between lenses or reflectors

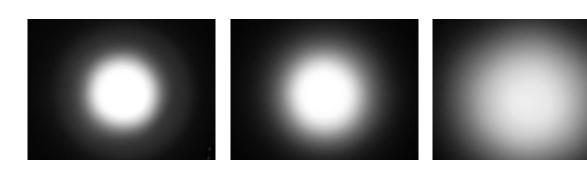
Lens vs Reflector

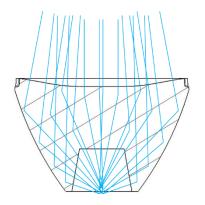
Same FWHM – different size, appearance & performance -

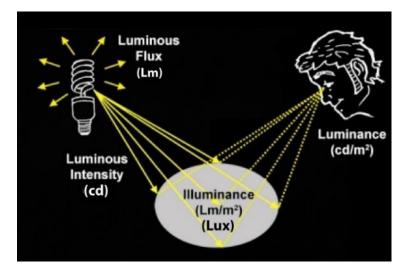

Beams that are controlled by an optical surface

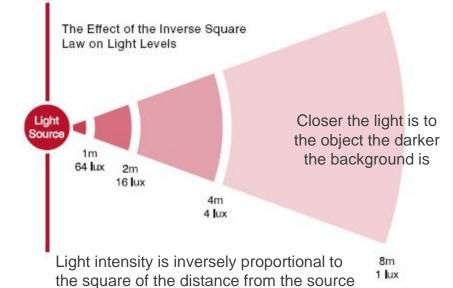
Beams that do not touch any optical surface

REFLECTOR





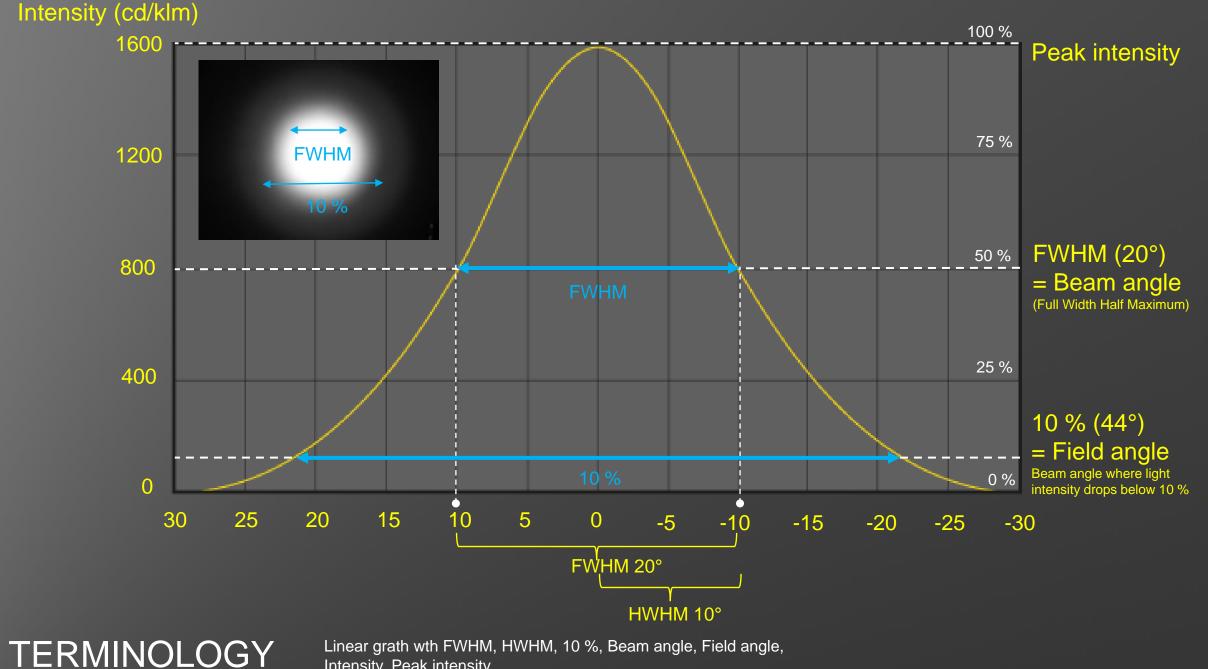

TIR-LENS



Luminance & Illuminance

Term	Measure	What does it mean?
Luminous flux	Im	Total light emited by a source
Luminous intensity	cd	Light emitted in specific direction
Illuminance	lux (or lm/m2)	Light falling on surface
Luminance	cd/m2	Perceived brightness of surface

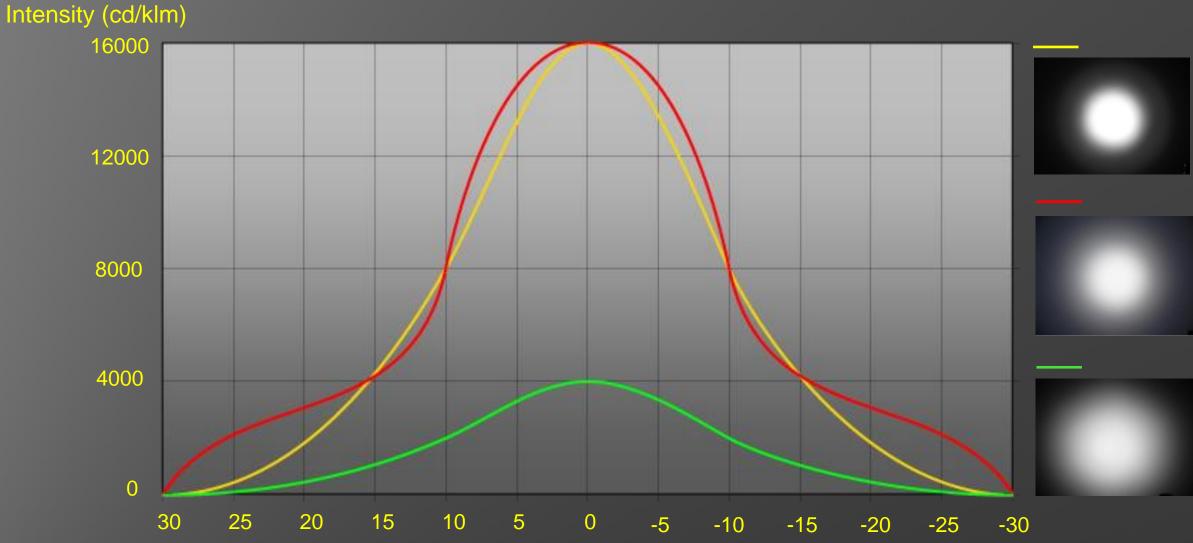
Lux Level	Work Activity and Function	Example of User Area
20 - 80	Public walking	Public parks and open-air carparks
100 - 140	Casual non-visual task	Corridors, changing rooms, office restrooms
150 - 180	Some perception of detail	Warehouses, stores, plant rooms, lift lobbies
200 - 240	Continuous occupation	Entrance halls, dining rooms
250 - 300	Very easy visual task	Public toilet, classrooms
300 - 400	Moderately easy visual task	Private office, libraries, lecture theatres
500 - 600	Moderately difficult visual task	Offices, laboratories, retail outlets
750 – 900	Difficult visual task	Supermarkets, technical drawing offices
1000 – 1300	Very difficult visual task	Operating theatres, polishing and painting plant
1500 - 1800	Extremely difficult visual task	Assembly plants, inspection plants
>2000	Exceptionally difficult visual task	Precision assembly, fine work inspection


100 000 lx

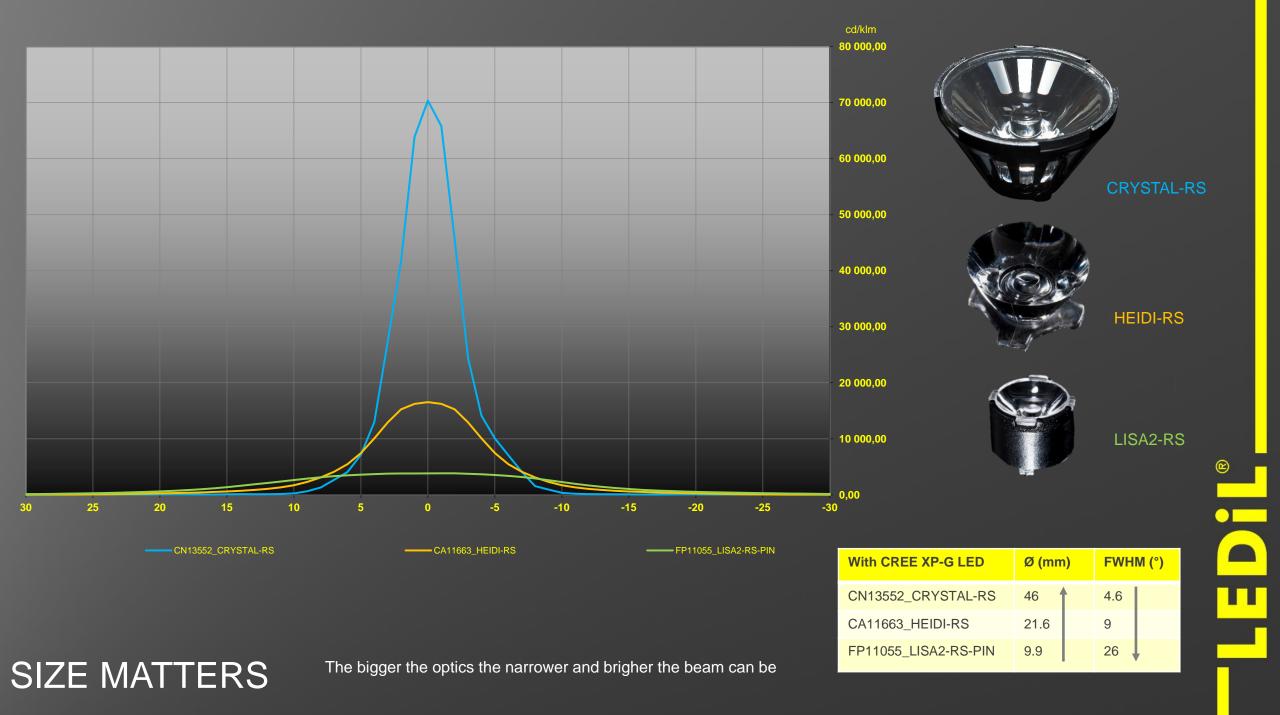
Recommended light levels (lux) for different work spaces

Efficiency

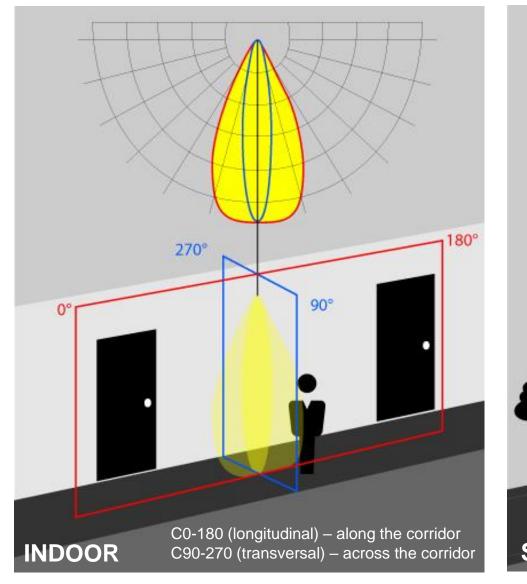
- Luminous efficiency is a measure of how well a light source produces visible light. It's a ratio of luminous flux to power of light source (Im/W).
- **Optical efficiency** is a percentage of how much of the produced flux is actually extracted from luminaire (Efficiency % or Light Output Ratio, LOR%)

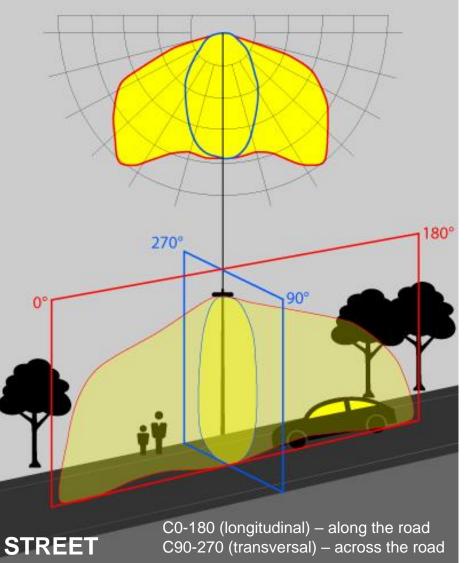


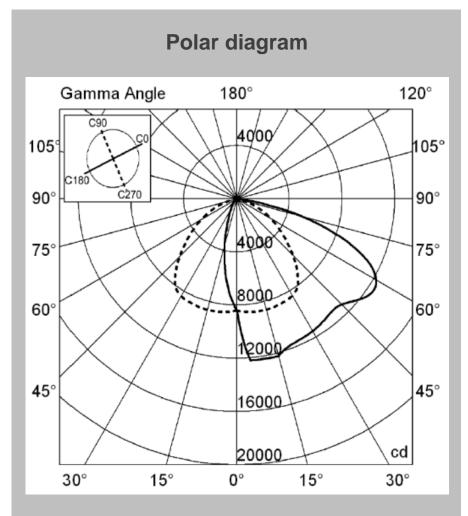
C


0

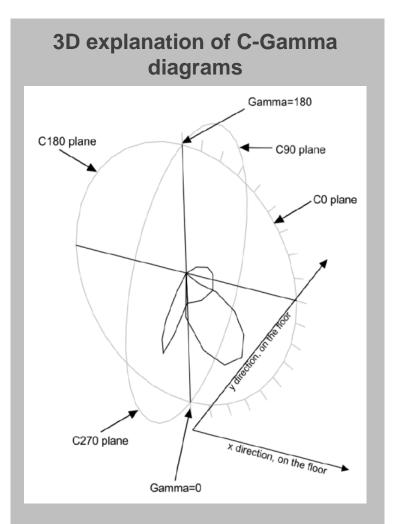
Linear grath wth FWHM, HWHM, 10 %, Beam angle, Field angle, Intensity, Peak intensity


All three optics has the same FWHM but different peak intensities and 10 % values.

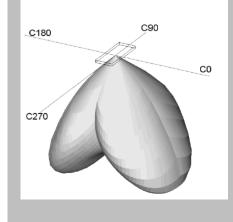

20° BEAM


Photometrics (polar graph) – how to read?

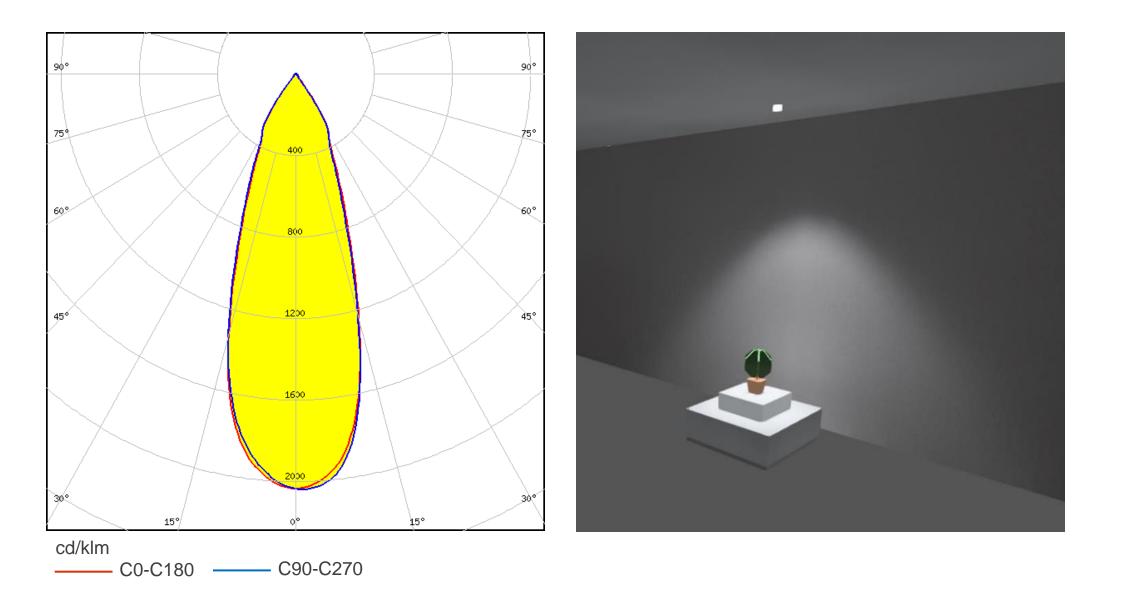
Based on IES-files. IESNA files are read other way around.



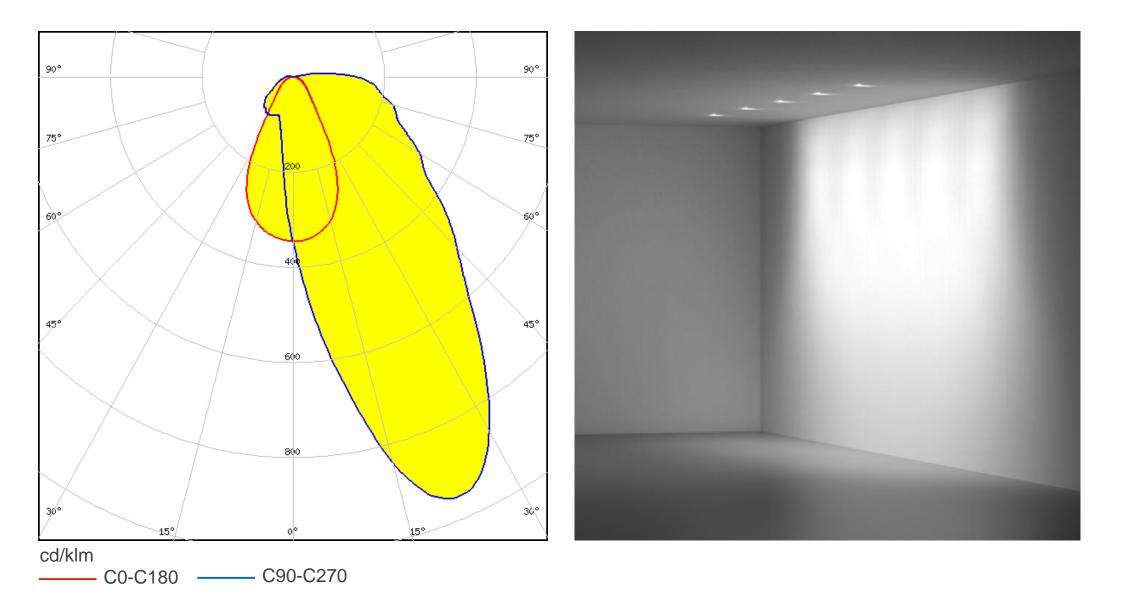
Photometries



Shoots most of flux out to the left and is symmetrical in the C90-C270 plane

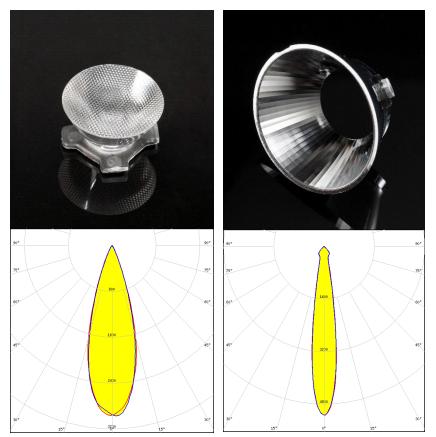

The default positioning, the luminaire can be rotated and tilted. For symmetric light distributions gamma angle is usually 0 degrees and omitted.

Complete "photometric solid"

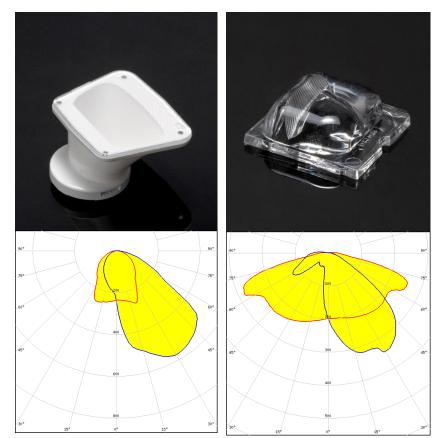


For analysis of uneven or assymetrical cases

Symmetrical light distribution



Asymmetrical light distribution


Regular design optics vs Freeform optics

Regular design optics

- Symmetrical beam patterns
- Simpler designs

Freeform optics

- Asymmetrical beam patterns
- Complete control of light
- More advanced optical designs

Simulation example#1: INDOOR, symmetrical beam

Fortimo LG6030 (MP)

LED:	Philips
No. of optics in luminaire:	5 pcs
No. of luminaires:	16 pcs
Installation height:	<u>4 m</u>
Dist. between luminaire rows:	2 m
Dist. between luminaire centers	
in a row:	2 m
Luminous flux (luminaire): Power: Total load: Luminous flux total (Luminaires): Luminous efficacy: Efficiency	4455 In 38 W 608 W 71 280 117 Im/ 89 %*

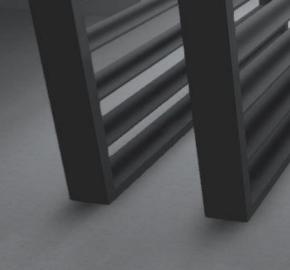
*Transmittance at 3.2-mm thickness (standard D 1003) 88 %. Thinner thickness has better efficacy. Measured using white PCB with good reflectance.

SIMULATION

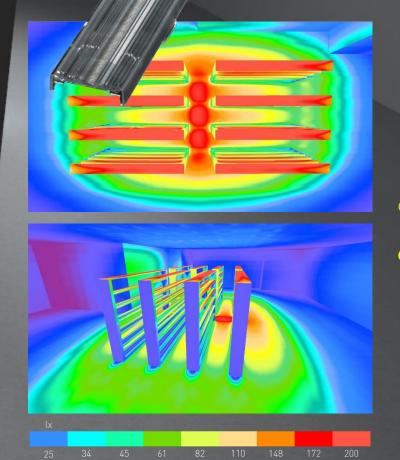
Industrial hall lighting, Mid bay FLORENCE-3R-IP-Z90 Linear luminaire with 5 optics

RESULTS at 0.8 m heig	ht :
Average:	708 lx
Min:	482 lx
Max:	859 lx
u0:	<u>0.68</u>

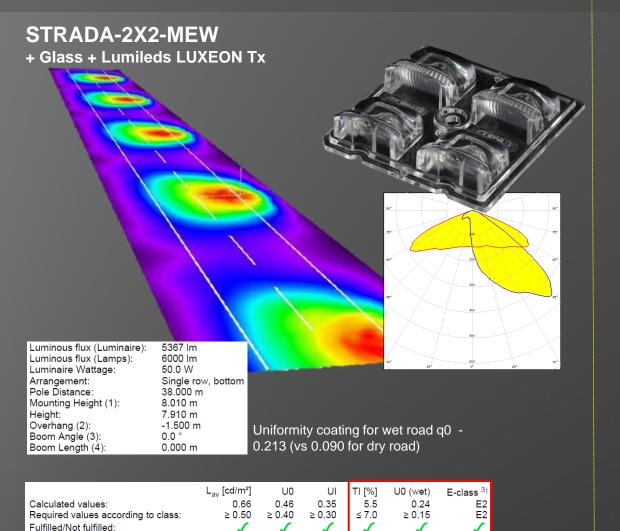
Simulation example#2: INDOOR, asymmetrical beam


LED:

SAMSUNG LMB561+ Luminous flux (Luminaire): 3347 lm Power (Luminaire): 27 W Luminous efficacy: 124 lm/W Efficiency: 84 % Mounting height: 9 m No. of luminaires in a row: 8 pcs No. of luminaires in total: 40 pcs

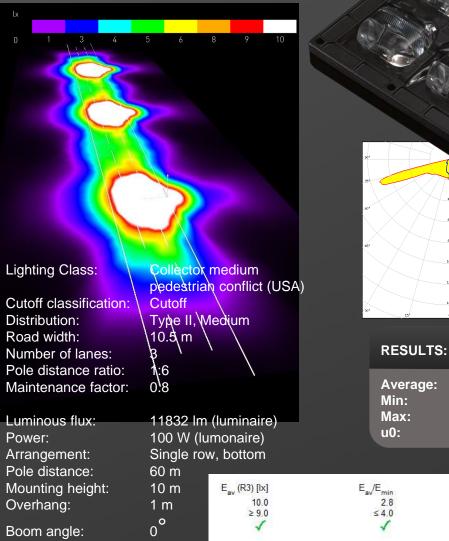

RESULTS at 1.6 m height

Average:	171 lx
Min:	143 Ix
Max:	222 Ix
u0:	0.84
UGR max:	25


SIMULATION

Warehouse aisle and shelf lighting Continous row LINNEA-O

F15756_LINNEA-O


Simulation example#3: STREET, Europe & USA

Glare and uniformity in line with E2-class regs

SIMULATION

STRADA-2X2MXS-T2

0.4 ≤ 0.4

10 lx

3.6 Ix

34 Ix

0.36

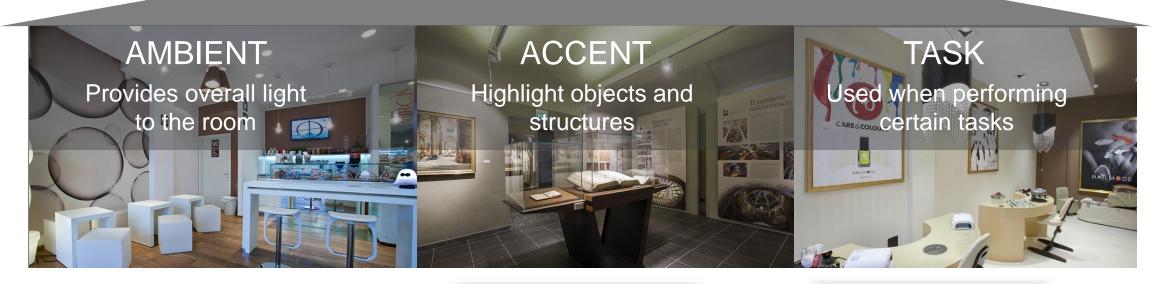
L_{v max}/L_{av}

All lighting performance requirements are met

Road in Denmark with E2-class requirements (including wet road) & STRADA-2X2-MEW USA collector road & STRADA-2X2MXS-T2

Simulation example#4: STREET, tunnel

LED: CREE XP-G3 Efficiency: 93 % Luminous flux: 930 lm (luminaire) Road width: 8 m FS3 Number of lanes: 2 Spacing: 8 m MANA MANA Mounting height: 5.4 m Maintenance factor: 1.0 RESULTS (luminance): 0,45 cd/m2 Avg: Min: 0.07 cd/m2 0,59 cd/m2 Max: 3 93 00 5 00 78.00 89 83 0 0.10 0.20 0.30 0.50 cd/m² **Tunnel lighting** SIMULATION Asymmetrical counter-beam (FT TF FS FN **T**4 STRADA-2X2-FS3

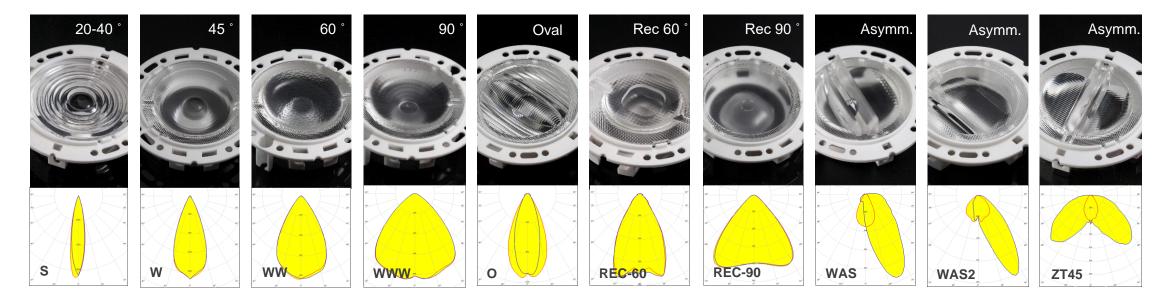

2. INDOOR LIGHTING

- Types of indoor lighting and typical beams
 - System reflectors and connectivity

Glare

Industrial lighting and typical beams

Types of indoor lighting & example beams

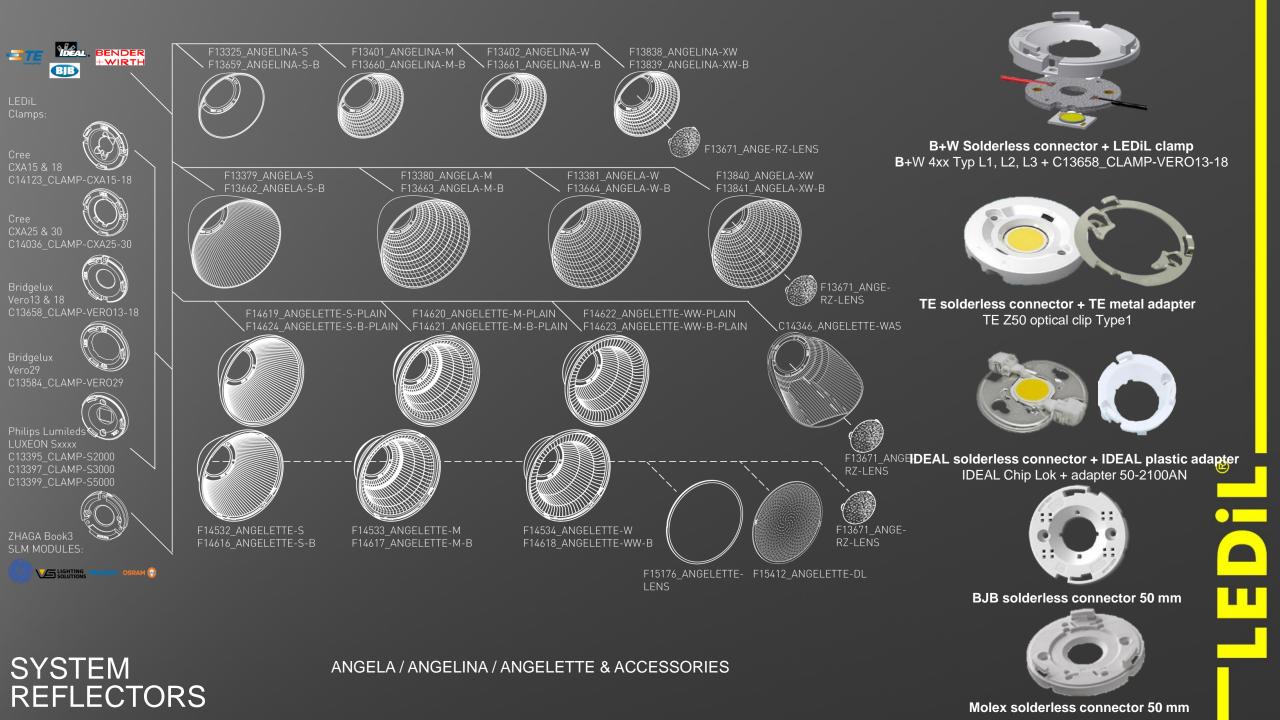


Example of indoor lighting beams

RONDA- low profile system for any indoor lighting needs

COMPATIBILITY

- LES sizes up to 16 mm, asymmetrical up to 14 mm
- Three holder versions to support most common connectors:
 - Holder A (Ø70 mm): LEDiL twist and lock base parts, 3rd party connectors from TE, Bender+Wirth and IDEAL
 - Holder B (Ø70 mm): 3rd party connectors from BJB, IDEAL and Stucchi
 - Holder C (Ø54 mm): LEDiL HEKLA



LEDiL Reflector Portfolio

System Reflectors

SYSTEM REFLECTORS **REFLECTORS** Ømm LENA NN KONNTAKT ANGELA Ø111, H86 Ø120, H74.5-79.3 BARBARA LES 35 mm LES 32 mm M,S,SS,W,WAS S,M,W,XW Ø70. H19 **DL.CL** lenses 120 LES 19 mm RZ lens S,W,WW,XW in basic & PF variants RZ lens ANGELETTE MIRELLA Ø50, H23.6 Ø110, H57.3 100 LES 14 mm BARBARA-G2 LE\$ 32 mm S.M.W.XW in basic. S,M,WW,WAS Ø70, H19 PIN & PF variants Plain: S,M,W LES 17 mm RZ, CL, DL lenses RZ, CL, DL lenses S,W,WW RZ lens 80 **BLONDIE** MIRELLA-G **BROOKE** ÁNGELINA Ø92 X 78.3, H45 Ø50, H23.6 A; 3 inserts Ø45. H19.7 LES 12 mm Ø82, H31 LES 18 mm LES 32 mm S.M.W Base parts for S,M,W,XW, SCR-M,W 60 RZ, CL, DL S,M,W,XW I FNINA RZ lens lenses RZ lens Ø74, H46 RITA LES 35 mm 36+29, H17-BRIDGET S.M.W. XW A,WAS, -RZ Ø22.6. H12.8 DL, CL S,M,W-UNI BOOM lenses 40 REGINA **BROOKE-G2** Ø22.2, H14 Ø15.9, H19 M,S,W,XW Ø45. H19.7 Ø45, H25 🞙 LES 18 mm S,M,W,WW,S-IRIS S,M,W RZ lens MINNIE/-LT 20 Ø35, H<u>15</u> M,W,WWW,XW COB HP 3535 HP 7070 LED type

 \emptyset – diameter (mm) H – height (mm) LES – light emitting surface RZL– color mixing lens DL – diffuser lens CL – clear lens New generation available

HEKLA installation video

We've made an installation video for HEKLA and you can see it on our Youtube page at

IRELLA-G2 50 mm

Share and like as you wish.

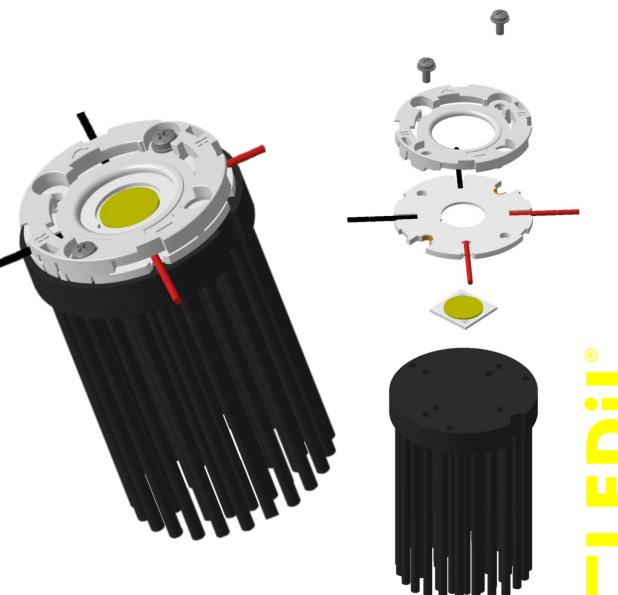
CARMEN Ø 70 mm Ø 50 mm

incl. CARMEN-HLD-C

HEKLA

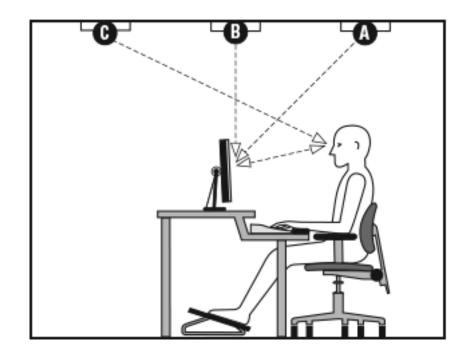
Ø44 mm sockets & solderless connectors

- **COMPATIBLE**: support for many COBs and LEDiL optics •
- USABLE: easy to use twist & lock mechanism
- **DURABLE**: long lasting materials that can handle high ullettemperatures without losing grip
- **INNOVATIVE**: Same system freedom to choose between • solderless connector or mechanical socket


VINNIE

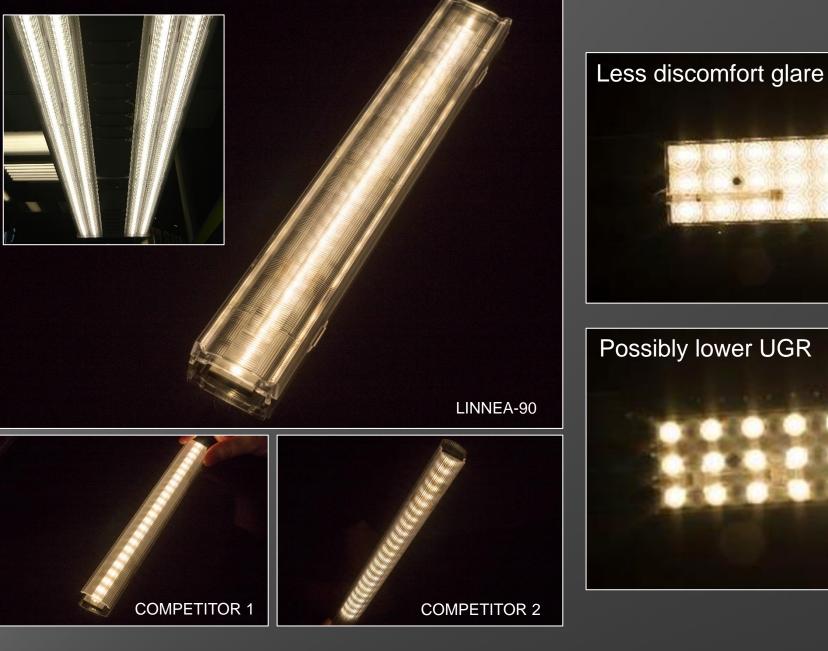
ONDA Ø 54 mm incl. RONDA-HLD-C

OKF-G2


Modular light engine reference design

- Based on LEDiL's HEKLA platform
- Same basic light engine design can be used in a range of applications
 - Spotlights
 - Downlights
 - Scalable suits for tunable or normal white
- Built on standard off the shelf components
- Tunable white version
 - LEDIL HEKLA-SOCKET-K
 - B+W 481 Typ L8 solderless connector
 - Citizen LCN-C02B tunable white COB
 - MTX LPF4768-ZHP Pin Fin LED Cooler ø47mm
- Fixed white version
 - LEDIL HEKLA-SOCKET-K
 - B+W 481 Typ L8 solderless connector
 - Citizen CLU 700 / 701 White COB
 - MTX LPF4768-ZHP Pin Fin LED Cooler ø47mm

GLARE


Glare is the sensation of discomfort in the vision produced by bright areas within the visual field, such as lit surfaces, parts of the luminaires, windows and/or roof. Glare shall be limited to avoid errors, fatigue and accidents.

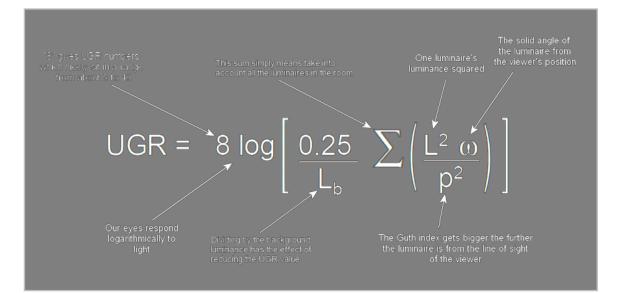
Disability glare: affects your visual performance, can be measured

Discomfort glare: subjective evaluation, feels uncomfortable but not **<u>necessarily</u>** affect your visual performance

Direct glare (C) -> bright lamps, measurable and has a clear affect on your performance Reflected glare (A & B) - reflection of light on wet or shiny work surfaces

C

•

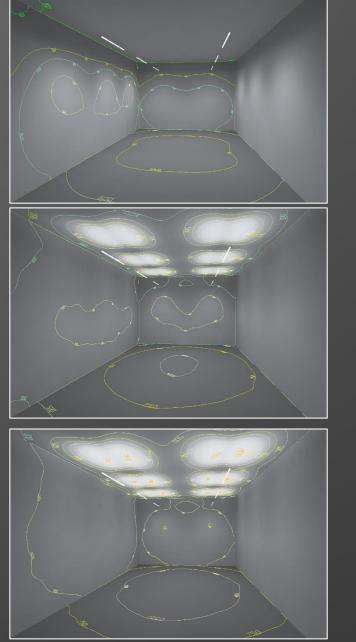

REFERENCE

Uniformity on light emitting area LINNEA-90 vs comptetitors FLORENCE-Z90 vs competitor

How to measure and evaluate glare?

- 1. UGR observer / UGR table as part of any lighting calculation software (CIE most common). NOTE!! UGR is assuming uniform luminance over the entire light exit window and is not always accurate with small point sources.
- 2. Detailed light planning and visual evaluation
- 3. Sollner diagram
- 4. Luminance mapping (old vs new)

Tools: 1) Human eye 2) Computer 2) Luminance meter


UGR	Discomfort Glare Criteria
10 and under	Imperceptible
13	Just perceptible
16	Perceptible (suited for accurate eye tasks)
19	Just acceptable (suited for average eye tasks)
22	Unacceptable (suited for moderate eye tasks)
25	Just uncomfortable (suited for simple eye tasks)
28 and over	Uncomfortable

1. Downlighting only

2. Downlighting and some amount of uplighting

3. Equal amount of downlighting and uplighting

SIMULATION

Simulation of upligh affect on UGR 4 modules per luminaire, 2 X 3 luminaires installed FLORENCE-1R-Z90

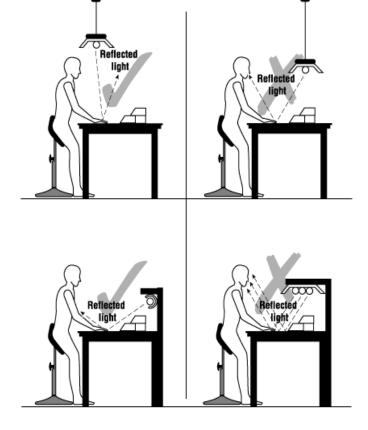
- UP: 0 lm per module
- Z90: 2000 lm per module

• UGR = 19

- UP: 1000 lm per module
- Z90: 2000 lm per module

• UGR <17

- UP: 2000 lm per module
- Z90: 2000 lm per module
- UGR <15


UGR table in use

	Glare E	valuat	ion A	ccordi	ng to	UGR						
	ρ Ceiling		70	70	50	50	30	70	70	50	50	30
	ρ Walls		50	30	50	30	30	50	30	50	30	30
	ρ Floor		20	20	20	20	20	20	20	20	20	20
Room reflectances %	Room Size X Y		Viewing direction at right angles to lamp axis					Viewing direction parallel to lamp axis				
	2H	211	18.7	19.6	19.0	19.8	20.0	16.9	17.8	17.1	18.0	18.2
		3H	18.6	19.4	18 0	19.6	19.8	16.7	17.5	17.0	17.8	18.0
		4H	18.5	19.2	18.8	19.5	19.8	16.7	17.4	17.0	17.7	17.9
		6H	19.4	19.1	18.8	19.4	19.7	16.6	17.3	16.9	17.6	17.9
		12H	18.4 18.4	19.0 19.0	18.7 18.7	19.3 19.3	19.6 19.6	16.6 16.5	17.2	16.9 16.9	17.5	17.8 17.8
	4H	2H	18.5	19.3	18.8	19.5	19.8	16.7	17.5	17.1	17.7	18.0
Viewing directions to lamp	201	3H	18.4	19.0	18.8	19.3	19.6	16.6	17.2	17.0	17.5	17.8
		4H	18.3	18.9	18.7	19.2	19.5	16.6	17.1	16.9	17.4	17.8
axis, crosswise/endwise		6H	18.3	18.7	18.7	19.1	19.5	16.5	16.9	16.9	17.3	17.7
		8H	18.2	18.6	18.6	19.0	19.4	16.4	16.8	16.9	17.2	17.6
		12H	18.2	18.5	18.6	18.9	19.4	16.4	16.8	16.8	17.2	17.6
	SH	4H	18.2	18.6	18.6	19.0	19.4	16.4	16.8	16.9	17.2	17.6
		6H	18.1	18.5	18.6	18.9	19.3	16.4	16.7	16.8	17.1	17.5
		8H 12H	18.1 18.0	18.4	18.6 18.5	18.8 18.7	19.3 19.2	16.3 16.3	16.6 16.5	16.8 16.7	17.0	17.5
	1011	2233	1.1					0.000	6.345	3323	239.2	33.3
	12H	4H 6H	18.2	18.5	18.6 18.6	18.9 18.8	19.4 19.3	16.4	16.8 16.6	16.8 16.8	17.2	17.6
	T	SH	18.0	18.3	18.5	18.7	19.2	16.3	16.5	16.7	17.0	17.5
Room size factors –	Variation of t	he observer	position	for the lum	iinaire dist	ances 5						
column, H=height.	S = 1.	+2.1 / -6.4					+2.8 / -9.2					
	S = 1.5H		+4.0 / -15.0					+4.0 / -17.0				
	S = 2.0H		+6.0 / -19.3					+5.8 / -17.8				
	Standard table		BK00					BK00				
	Correction Summand		-1.0				-2.8					
	Corrected Gla	are Indices i	referring t	o 1100lm '	Total Lumi	nous Flux						

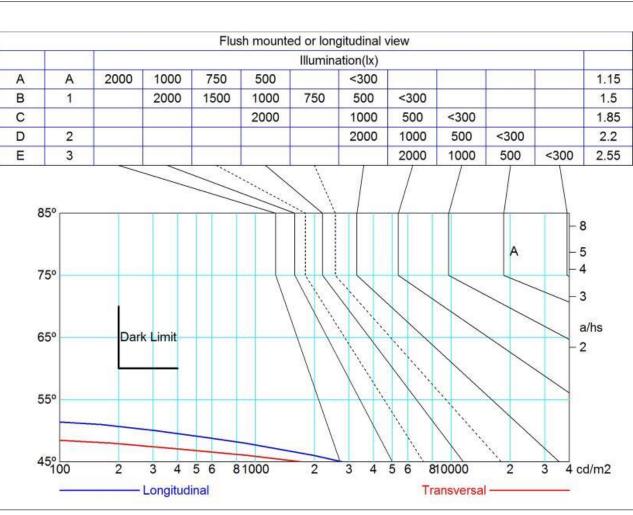
How to reduce glare?

Suitable beam for the purpose

- Narrow beam for office / task lighting
 Limiting light intensity above 45° angle
- Increased luminous emitting area size and uniformity
 - · Same lumen output evenly from bigger area less bright
 - No bright spots on lighting surface
- Blocking visibility to sourceShading / Shielding
- Decreasing light output
 - Not always possible without adding more luminaires
- Luminaire placement (light planning)
 Luminaires positioned so that they do not cause glare in the task area
 Accent/local lighting (light increased where needed, task light or retail spot lights)
- Increasing ambient lighting level (also with indirect light) -less contrast, eyes can adapt to more brightness
 - Wall washing (lower contrast, LES hidden)
 - Uplight (lower contrast, LES hidden)

Glare control

FLORENCE-1R and -3R families


- FLORENCE-1R and -3R lenses are designed for the best possible efficiency with minimal glare in mind
- UGR rating can be further reduced with additional shades:
 - Easy to use clip-on design
 - Available in grey and black

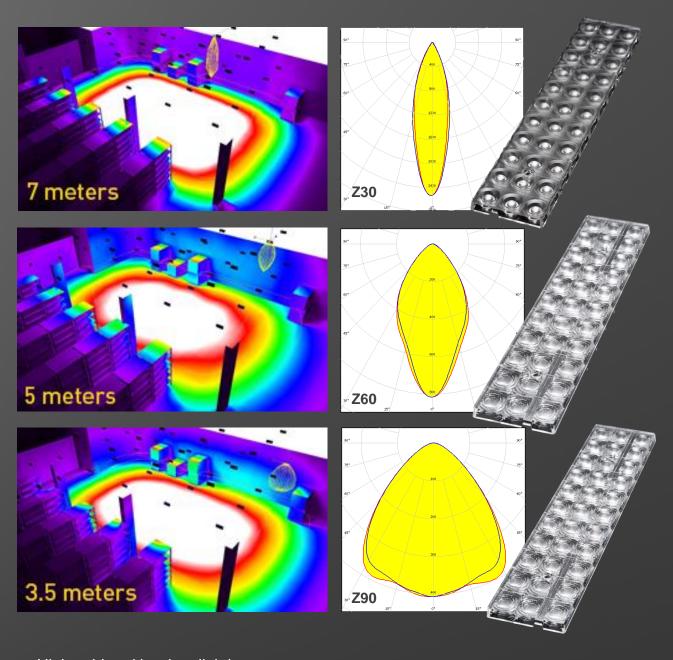
LEDIL DARK LIGHT CONCEPT

- Zero-Glare designs
- Glare below Sollner dark
 limit
- No visible light sources, only effect of light itself
- Based on black reflectors

FLORENTINA blocks all light after 55° viewing angle no matter what the light output is

REFERENCE

LEDiL Dark Light Concept FLORENTINA-2X2


About 15° viewing angle

About 55° viewing angle – nearly no light is seen

HIGH BAY

MID BAY

LOW BAY

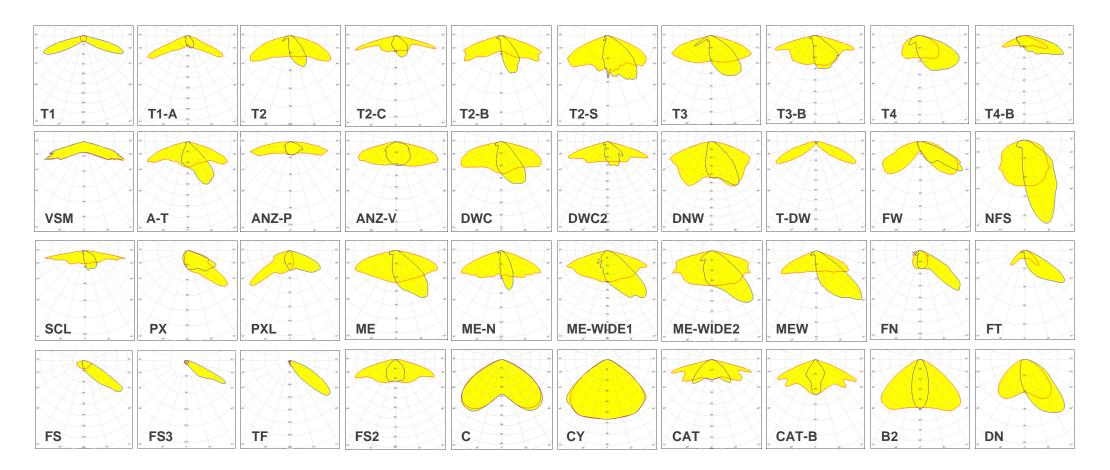
INDUSTRIAL

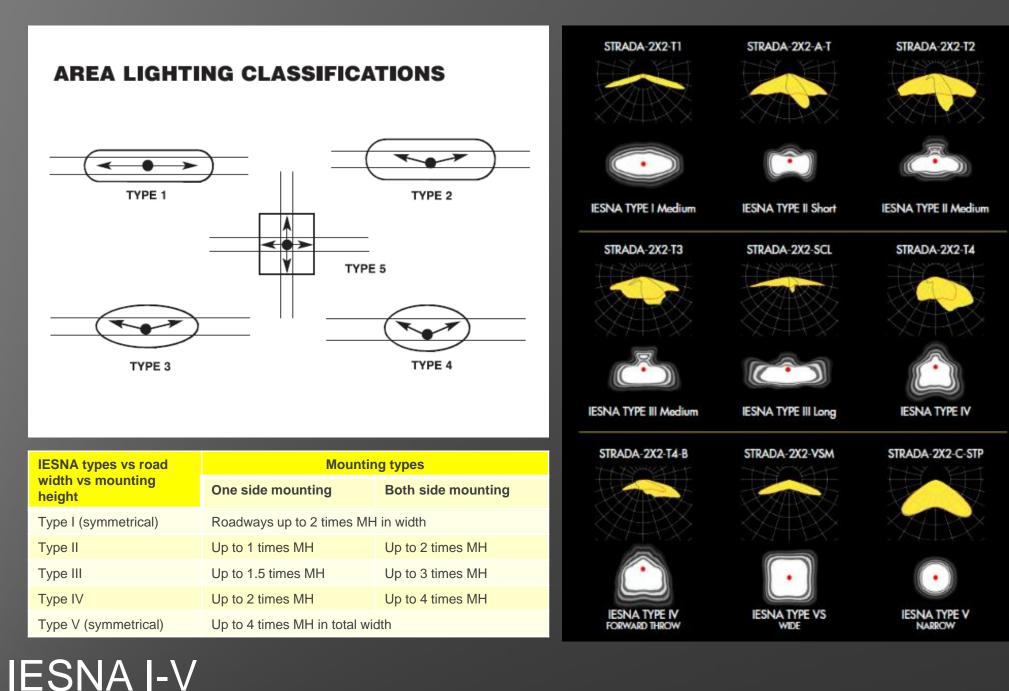
High, mid and low bay lighting Distance between luminaires 1.6 x 2 m with same illuminance level on the floor level FLORENCE-Z30, -Z60 and -Z90

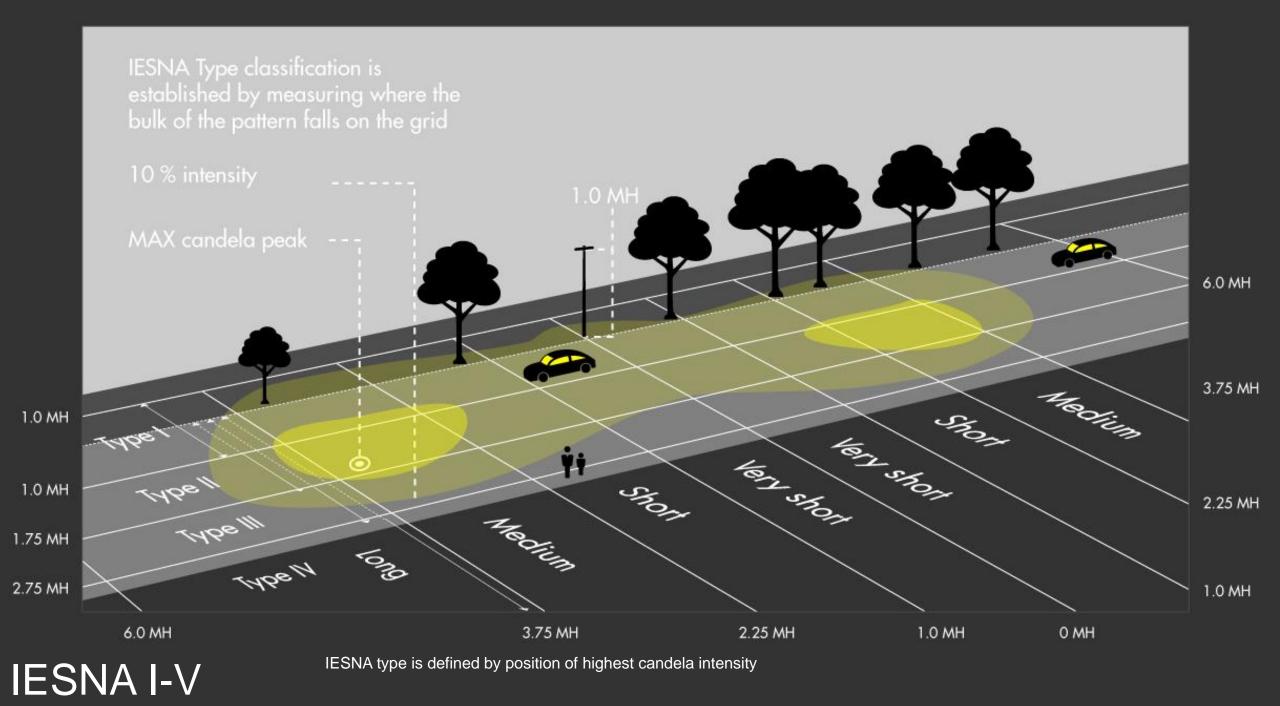
Typical beams for industrial lighting

Many beams in different product families optimized for different LEDs

BEAMS	DESCRIPTI ON	Typical Installation Height (m)	HB-SQ	HB-2X2	HB-IP-2X6	HB- 2X2MX-8	HB- 2X2MXS	STELLA	STRADEL LA-HB	STRADEL LA-8-HB	STRADEL LA-16-HB	FLORENCE -1R	FLORENCE -3R	FLORENCE -3R-IP	LINNEA
~ 15 °	High bay	10>		RS	RS			RS							
~ 30 °	High bay	7		М	М	Μ		FRESNEL	S	S	S		Z30		
~ 45 °	Mid bay	5-7	A	W, RW		W									
~ 60 °	Mid bay	5		WW, WWW	W		WW	HB	Μ	Μ	М	Z60	Z60	Z60	60
~ 90°	Low bay	3			WWW	WWW	WWW	WWW	W	W	W	Z90	Z90	Z90	90
Oval	Aisle lighting			х	х					х	x	х	х	х	х
Asymm.	Aisle lighting											x	x		х
Double asymm.	Aisle lighting											x			х


3. STREET LIGHTING


• IESNA


• Beams

Suitable beam for any installation!

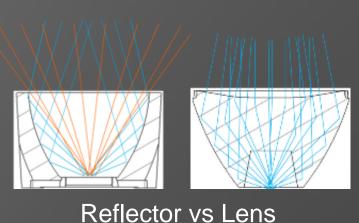
Existing street lighting beams

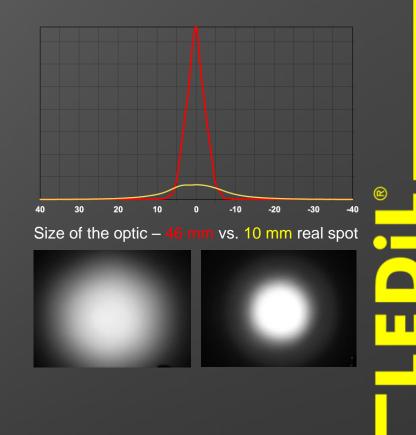
BEAMS	POLAR	DESCRIPTION	STRADA- SQ	STRADA- 2X2	STRADA- IP-2X6	STRADA- 2X2MX	STRADA- 2X2MXS	STRADELLA	STRADELLA -8/9	STELLA
T1		Symmetric IESNA Type I (medium) beam for narrow roads and paths with long pole distance and tilted armature		x						
T1-A		Asymmetric IESNA Type I (short) beam. Results a Type II beam with tilted poles. Targeted for Indian market						x	x	
Τ2		IESNA Type II (medium) beam, applicable for European P- class standard pedestrian lighting and M-class roads.	x	x	x	x	x	x	x	
T2-C		IESNA Type II (medium) beam with added house side backlight. Designed for tilted and long armatures		x						
Т2-В		IESNA Type II (medium) with minimized house side backlight.	x		x					
T2-S		IESNA Type II (short) light distribution perfect for high or dense pole setups and European ME roads. Ideal for the US car dealership front row lighting.				x				
Т3		IESNA Type III (medium) beam for typical road lighting setups.	x	x	x		x	x	x	
T3B & T3- B		IESNA Type III (medium) with minimized backlight	x		x					
Т4		IESNA Type IV for wider roads and area lighting like parking lots and yards.	X (+NP)	x						x
Т4-В		Wide IESNA Type IV beam with forward-throw beam for wide area lighting like parking lots.		x	x	x	x	x	x	
VSM (T5)		IESNA Type V (square) for wide areas such as parking lots.	x	x	x	x	x		x	x
A-T		Short IESNA Type II for narrow roads or high poles with extremely low glare.	x	x					x	
ANZ-P		Pedestrian lighting (P4 & P5) in Australia & New Zealand.	x							
ANZ-V		For vehicular road lighting (AS/NSZ V3) in Australia & New Zealand	x							

BEAMS	POLAR	DESCRIPTION	STRADA- SQ	STRADA- 2X2	STRADA- IP-2X6	STRADA- 2X2MX	STRADA- 2X2MXS	STRADEL LA	STRADEL LA-8/9	STELLA	
DWC/T- DWC		Universal road lighting beam with excellent mixed illuminance and luminance uniformity. (Typically IESNA Type III Medium)	x	x	X (+90 deg turned version)	x					
DWC2		Universal road lighting beam with excellent mixed illuminance and luminance uniformity. (Typically IESNA Type II Medium)				x	x			x	
DNW		Soft wide beam with good illuminance uniformity.		x							
T-DW		Soft wide beam with good illuminance uniformity.	x								
FW		Wide light distribution with good illuminance uniformity. Residential street lighting & staggered pole setups.	x	x	x						
NHS		Narrow beam with minimal house side backlight.		x							
SCL		Type II/III (Long) for very wide pole to pole distances. Ideal for pedestrian paths and residential roads. (EN13201 P-classes)	x	x	x	x			x		
РХ		Fully asymmetric beam designed to highlight pedestrian crossings for right side traffic.	x	x							
PXL		Fully asymmetric beam designed to highlight pedestrian crossings for left side traffic.		x							
ME		Fulfilling EN13201 M-class requirements where road width is equal or less the pole height. Excellent longitudinal luminance uniformity.	X (+NP)	x	x				x		
ME-N		Fulfilling EN13201 M-class requirements where road width is less than the pole height. Designed for high poles.							x		
ME-WIDE1		Fulfilling EN13201 M-class requirements where road width is equal or less the pole height. Excellent longitudinal luminance uniformity. With added house-side backlight.		x							
ME-WIDE2		Fulfilling EN13201 M-class requirements where road width is equal or less the pole height. Excellent longitudinal luminance uniformity with staggered pole setups.		x							
MEW		Fulfilling EN13201 M-class requirements for wet road surfaces in north Europe. Extremely low glare.		x							

BEAMS	POLAR	DESCRIPTION	STRADA-SQ	STRADA-2X2	STRADA-IP- 2X6	STRADA- 2X2MX	STRADELLA	STRADELLA- 8/9	STELLA
FN		Narrow forward throw beam for area lighting. Excellent for lighting stadiums and airport fields.		x					
FT		Forward throw beam for area lighting.	x						
FS		Forward throw beam for area lighting.	x						
FS3		Forward throw beam optimized for European tunnels, resulting extremely efficient lighting with counter-beam method.	x	x					
TF		Narrow forward throw beam optimized for European tunnels.		x					
FS2		For symmetrical tunnel lighting and parking garages. Ideal for caternary street lighting.	x						
С		Area and street lighting such as parks and pedestrian walkways	x	х					
CY		Canopy lighting with batwing light distribution. Suitable for symmetrical tunnel lighting.	x	x			x		
CAT		Caternary street light beam optimized for EN13201 M-classes.		x					
CAT-B		Narrow caternary street light beam, optimized for EN13201 M- classes and tilted poles		x					
B2		Area lighting and applications demanding a wide oval beam pattern		x					
DN/T-DN		Area lighting with shorter illumination distances	x	x					

4. THINGS TO CONSIDER

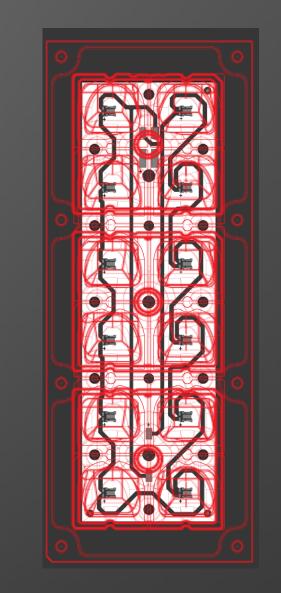

WHEN CHOOSING THE RIGHT OPTICS


- Flexibility and modularity
- LEDs
- Materials
- IP67
- System cost and in-use efficacy

Things to consider

when choosing the right optics for the luminaire

- Mechanical constraints / demands
 - Product design / strategy
 - Miniaturization, IP / IK classes
 - Multiple source arrays (e.g. LED / CSP clusters)
- Ease of manufacturing
 - Modules, product lifecycle (short vs long)
 - Positioning pins / clips
- Cost constraints
 - Price vs. performance
- Thermal constraints
 - PC vs. PMMA vs. Silicone
- Lifecycle costs
 - LÉDiL interchangeable systems


Flexibility of design

- LEDiL designs and manufacturers standard optics to fit and work with different LEDs
- Wide range of different solutions and beams ensures you can find close to optimal results for each application and requirement
- We carefully study **different installations** while we optimize the result for each application
- Innovative solutions and patented technologies

Modularity

Wide compatibility & easy modification

- LEDiL offers a variety of standardized products with modular structure resulting in lower manufacturing costs and faster time to market
- Same light engine can be used with
 - 12x STRADA-SQ (up to 7070 LED packages) for higher lumens
 - **3x STRADA-2X2** (up to 5050 LED packages) the biggest family
 - 1x STRADA-IP-2X6 (up to 5050 LED packages) up to IP67
- One light engine many lighting solutions!

Different type of LEDs

Typical LED compatibility

LEDiL product families for industrial usage vs LEDs

MP = Mid Power LEDs HP = High Power LEDs CSP = Chip Scale Package LEDs

Single lenses	CSP small	CSP big	3535 MP	3535 HP	5050 HP	7070 HP	COB small <=10 mm	COB big >10 mm	
STRADELLA-HB							_		
HB-SQ								_	
STELLA									
Modules									
HB-2X2									
STRADELLA-8-HB			2chip						
STRADELLA-16-HB			1chip						
IP Modules						_			
HB-IP-2X6								4	
HB-2X2MX									
HB-2X2MXS									
Linear				_					
FLORENCE-1R									
FLORENCE-3R									
LINNEA									

Materials

- **PMMA** (polymethylmethacrylate = acrylic)
 - High resistance for outdoor UV aging
 - High transmittance 93 %
 - PC (polycarbonate)
 - Better impact but lower UV resistance than with PMMA
 - Suitable for special requirements e.g. Fire rating and glow wire

Optical silicone

- Great UV and thermal resistance; sealable designs
- Higher material cost but can reduce system cost as well as prolong a lifetime of a luminaire

	PMMA	PC	SILICONE
Max recomm. temp.*	80 °C	110 °C	150 °C
UL RTI	90 °C	115 °C or higher	150 °C
Transmittance (Typ.)	93 %	88 %	94 %
UV resistance	++	-	+++
IK resistance	-	++ (up to IK10)	+++

*LEDiL max recommended temperature taking light absorbtion and other environmental circumstancies into account

MP = Mid Power LEDs HP = High Power LEDs COB = Chip On Board LEDs

Up to IP67 lenses

System cost

Design example glass vs silicone

Glass

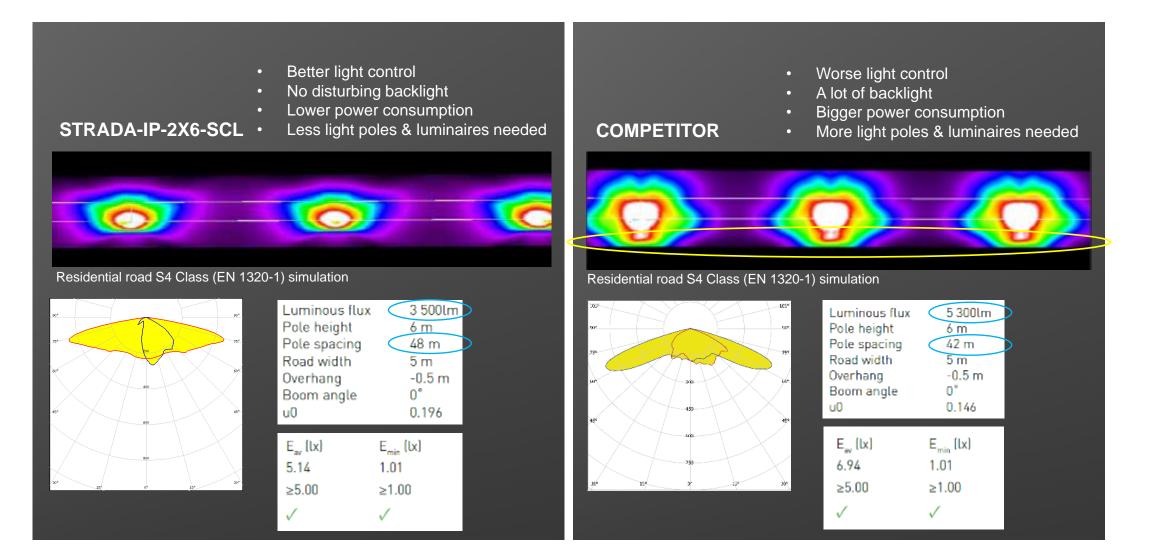
30 W Street light IP65 (glass)

- 3 die-cast alloy parts
- Several sheet metal parts
- 18 screws
- Assembly time 10 minutes
- 3.5x tooling costs
- Limited optimization of beam types

Silicone

30 W Street light IP65 (silicone)

- 2 (1) die-cast alloy parts
- 6 screws
- Assembly time 3 minutes
- 1x tooling cost
- Freeform optics allow precise and controlled light distributions


25 25 4 25 4 10 15 10 31 20 GLASS SILICONE

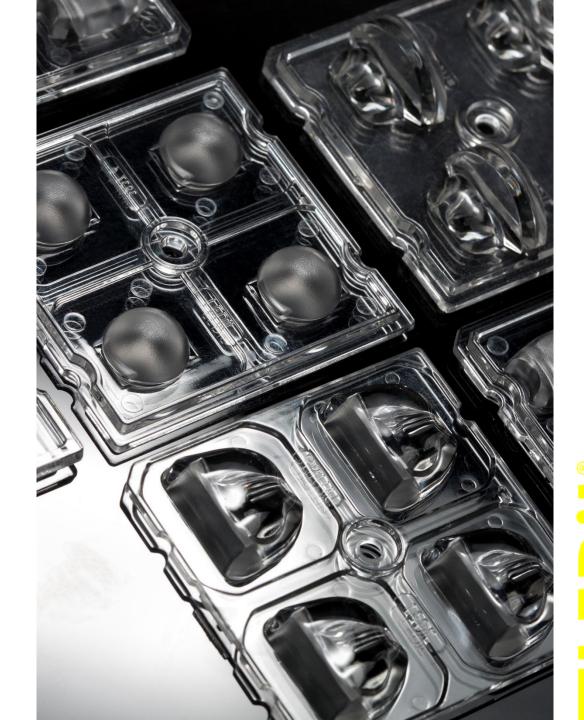
■ Mech. ■ LED ■ Optics ■ Electr.

- Secondary optics can offer substantial manufacturing cost savings
 - Mechanical design
 - Structural parts
 - Ease of assembly
 - Logistics
- Cheapest optical solution doesn't necessarily achieve lowest BOM cost!
 - Higher power needed
 - More complicated design
 - Quality problems
 - More complicated manufacturing

Not all optics are equal

LEDiL optics have better light control resulting in less luminaires needed

Profitability calculation example per km

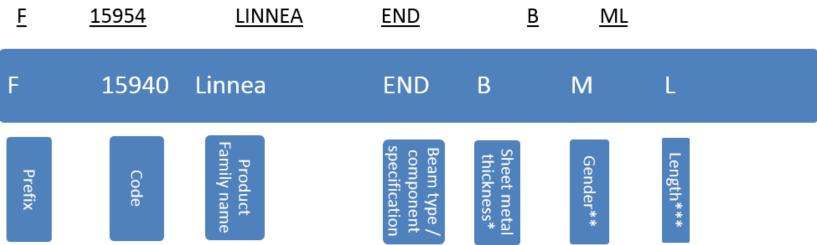

With LEDiL optics ~2x less energy cost and ~2x less LEDs needed

	LEDIL STRADA-IP- 2X6	COMPETITOR 2X6	COMPETITOR 2X2		
Luminaire efficiency (Im/W)	120 lm/W	120 lm/W	120 lm/W		
Luminous flux (Im)	3500 lm	5300 lm	5500 lm		
Power/luminaire (W)	30 W	45 W	45 W		
Pole distance (m)	48 m	42 m	45 m		
Poles/1km (pcs)	21 pcs	24 pcs	22 pcs		
W/km	630 W = 0.63 kWh	1080 W = 1,08 kWh	1000 W = 1 kWh		
Avg eur electricity price (€/kWh)	0.14 €/kWh	0.14 €/kWh	0.14 €/kWh		
Lights are on/year (h)	365 d*12 h=4380 h	365 d*12 h=4380 h	365 d*12 h=4380 h		
Energy cost/km/year (€)	387 €	662€	613€		
Amount of LEDs needed per luminaire with 3535 HP (300lm)	12	24 (17.7)	20 (19)		
Amount of LEDs needed per km (pcs)	252	576	440		

GOOD OPTICAL DESIGN MEANS GOOD LIGHTING WITH

- LESS watts MORE luxes
- LESS lumens MORE lighting
- LESS luminaires MORE light
- LESS cost MORE savings
- LESS waste MORE eco-friendly

With LEDiL optics you can achieve LIGHT THAT IS RIGHT



5. PRODUCT NAMING & ABBREVIATIONS

14.9 AL

Product naming

F15954_LINNEA-END-B-ML

LEDiL prefixes tells you the following information:

- Country of origin (CoO)
- Does the product have one or multiple components
- If the product is preassembled or not
- Does the product have tape or not

F	FI/Component
C	CN/Component
FA	FI/Assembled components with tape
CA	CN/Assembled components with tape
FP	FI/Assembled components without tape
CP	CN/ Assembled components without tape
FX	FI/Unassembled components with tape
CX	CN/Unassembled components with tape
FN CN	FI/Unassembled components without tape CN/Unassembled component without tape

Abbreviations in product names

RS	Real Spot	0	Oval	RZ	RZ Diffuser (Patented color mixing)	3R	Optics in 3 rows	PF	Press fit assembly
SS	Smooth Spot	WAS, ZT25	Wall washer	D	Diffused spot	1R	Optics in 1 row	PIN / P	Pin assembly
S	Spot	z	Compliant with Zhaga standard	GC	Glare control	2X2S/ MXS	Variants made from silicone	в	Version compatible with BJB; Version (after A); For 0.5 mm thick sheet (LINNEA
м	Medium	ZT45, Z2T25	Double asymmetrical beam angle	НВ	High bay	IP	Ingress protected	М	Male
w	Wide	SE	Side emitter	CL	Clear sublens	нv	High voltage	F	Female
ww	Wider	REC	Rectangular	DL	Diffused sublens	FLAT	Flat bottom design for wider PCB design compatibility	L	Long
www	Very Wide	BW	Batwing	RZL	Colour mixing sublens	PLAIN	Version with plain surface and not possible to attach sublenses on top	G2	Second generation
xw	Extra wide	20,40,60 Z30,Z60 etc.	Beam angle in numbers	HLD	Holder	PC	Made from polycarbonate		

Abbreviations

ССТ	Correlated Color Temperature	LOR	Light Output Ratio
CFL	Compact Fluorescent Lamp	MF	Maintenance Factor
СОВ	Chip-On-Board	MH	Mounthing Height
CRI	Color Rendering Index	PC	Polycarbonate
FWHM	Full Width Half Maximum	РСВ	Printed Circuit Board
HID	High Intensity Discharge Lamp	РММА	Polymethylmethacrylate
НШНМ	Half Width Half Maximum	RGB	Colour model. Red + green + blue
.ies	Photometric data file with inverted longitudinal and transversal directions	RGBW	Colour and tunable with capable. Red + Green + Blue + White.
IESNA	Illumination Engineering Society of Norh America	RI	Room Inder
IK	Protection against mechanical impacts	RTI	Relative Thermal Index
IP	Ingress Protection	SSL	Led-based solid state lightning
LED	Light-Emitting-Diode	TIR	Total Internal Reflection
LES	Light Emitting Surface	UGR	Unified Glare Rating
		UF	Unitilization Factor